GYPSETIN, A NEW INHIBITOR OF ACYL-CoA: CHOLESTEROL ACYLTRANSFERASE PRODUCED BY Nannizzia gypsea var. incurvata IFO 9228

II. STRUCTURE DETERMINATION

BERNHARD NUBER

Anorganisch-chemisches Institut der Universität, Heiderberg Im Neuenheimer Feld 270, D-69120 Heiderberg, Germany

FRITZ HANSSKE

Chemische Forschung, Naturstoffchemie, Boehringer Mannheim GmbH, Sandhofer Straße 116, D-6800 Mannheim 31, Germany

CHIKARA SHINOHARA, SHINJI MIURA, KEIJI HASUMI and AKIRA ENDO*

Department of Applied Biological Science, Tokyo Noko University, 3-5-8 Saiwaicho, Fuchu, Tokyo 183, Japan

(Received for publication August 19, 1993)

The elucidation of the structure of gypsetin, a new inhibitor of acyl-CoA: cholesterol acyltransferase, is described in this paper. By spectroscopic and X-ray crystallographic analyses, the structure of gypsetin has been determined to be 8a,16a-dihydroxy-5a,13a-bis[1,1-dimethylallyl]-[1]benzazolidine[3''',2''':4'',5'']azolidino[1'',2'':4',5''][1,4]perhydrodiazin[1',2':1,5]azolidino[2,3-b]-[1]benzazolidine-7,15-dione.

In the preceding paper, we have described the fermentation, isolation, physico-chemical properties and biological activity of gypsetin, a new competitive inhibitor of acyl-CoA: cholesterol acyltransferase produced by *Nannizzia gypsea* var. *incurvata* IFO 9228¹). In this paper, we present the structure determination of gypsetin.

Spectroscopic Studies

The molecular formula of gypsetin was elucidated to be $C_{32}H_{36}N_4O_4$ (MW 540) from SI-MS (m/z 563 (M+Na)⁺ and 541 (M+H)⁺), HREI-MS (found: m/z 540.2728, calcd: m/z 540.2722 M⁺) and ¹H and ¹³C NMR spectra of gypsetin.

The ¹H NMR spectrum (Fig. 1) showed eight aromatic protons, six olefinic protons, eighteen aliphatic protons including four methyl groups, and four exchangeable protons at $\delta_{\rm H}$ 6.36, 6.05 and ~2.3. Although only 31 carbon signals were observed in the ¹³C NMR spectrum of gypsetin in CDCl₃ (Fig. 2), 32 carbon signals were found in the spectrum determined in CDCl₃-CD₃OD (1:9) as well as in DMSO-*d*₆. The number of protons attached to each carbon was determined by recording the DEPT and ¹H-¹³C COSY spectra.

From the HMBC (heteronuclear multiple bond connectivity), COLOC and ¹H-¹³C long-range COSY spectra of gypsetin, it was revealed that olefinic protons at $\delta_{\rm H}$ 4.87 (24-H) coupled to two carbons at $\delta_{\rm C}$ 43.9 (C-22) and 144.2 (C-23), and protons at $\delta_{\rm H}$ 5.03 and 5.09 (19-H) correlated with carbons at $\delta_{\rm C}$ 44.7

Fig. 2. ¹³C NMR spectrum of gypsetin (CDCl₃, 67.9 MHz).

(C-17) and 144.1 (C-18). The signals of methyl protons at $\delta_{\rm H}$ 0.58 (26-H) and 0.63 (25-H) showed cross peaks with the signals at $\delta_{\rm C}$ 91.0 (C-13a), 43.9 (C-22) and 144.2 (C-23), and methyl protons at $\delta_{\rm H}$ 1.29 (20-H, 21-H) correlated with three carbons at $\delta_{\rm C}$ 93.7 (C-5a), 44.7 (C-17) and 144.1 (C-18). From these results, along with ¹H-¹H COSY data, it was suggested that two 1,1-dimethylallyl groups bind to the quaternary carbons at $\delta_{\rm C}$ 91.0 (C-13a) and 93.7 (C-5a) (Fig. 3).

The exchangeable protons at $\delta_{\rm H}$ 6.05 (13-H) coupled to the signals at $\delta_{\rm C}$ 88.7 (C-8a), 130.2 (C-8b) and 91.0 (C-13a), and the signal of $\delta_{\rm H}$ 6.36 (5-H) showed cross peaks with the signals at $\delta_{\rm C}$ 93.7 (C-5a), 87.7 (C-16a) and 130.2 (C-16b). Methine proton at $\delta_{\rm H}$ 3.51 (7a-H) coupled to carbons at $\delta_{\rm C}$ 167.9 (C-7), 35.0 (C-8) and 170.4 (C-15), and methine proton at $\delta_{\rm H}$ 3.90 (15a-H) correlated with carbons at $\delta_{\rm C}$ 170.4 (C-15) and 35.8 (C-16). Methylene protons at $\delta_{\rm H}$ 2.42 and 2.70 (8-H) correlated with the signals at $\delta_{\rm C}$ 167.9 (C-7), 59.1 (C-7a), 88.7 (C-8a), 130.2 (C-8b) and 91.0 (C-13a), and methylene protons at $\delta_{\rm H}$ 2.63 and 3.27 (16-H) coupled to the signals at $\delta_{\rm C}$ 93.7 (C-5a), 170.4 (C-15), 61.0 (C-15a), 87.7 (C-16a) and 130.2 (C-16b). The exchangeable protons at $\delta_{\rm H}$ 2.31 (8a-OH) coupled to carbons at $\delta_{\rm C}$ 35.8 (C-16), 87.7 (C-16a) and 130.2 (C-8b), 87.7 (C-16a)

Fig. 3. Long-range couplings observed in the HMBC, COLOC and/or ¹H-¹³C long-range COSY spectra of gypsetin.

Fig. 4. The structure of gypsetin.

The configuration shown is relative one.

and 130.2 (C-16b). The aromatic protons showed long-range couplings as shown in Fig. 3. From these results, the presence of two identical partial structures was revealed.

When ¹³C NMR spectrum was measured in CDCl₃ after the addition of a drop of D₂O, the carbon signals at $\delta_{\rm C}$ 148.6 (C-4a), 93.7 (C-5a), 88.7 (C-8a), 148.4 (C-12a), 91.0 (C-13a) and 87.7 (C-16a) were upfield-shifted by 0.06, 0.08, 0.14, 0.08, 0.08 and 0.14 ppm, respectively. Gypsetin showed positive reaction with nitroprusside-acetaldehyde reagent²⁾ but not with ninhydrin reagent²⁾ suggesting the presence of secondary amine(s). These results are consistent with the presence of the structure shown in Fig. 3.

By means of an X-ray crystallographic analysis, structure (relative configuration) of gypsetin (Fig. 4) was determined as described below. Since NOE was observed between the olefinic methylene protons $(\delta_{\rm H} 5.03 \text{ and } 5.09)$ (19-H) and the methine proton at $\delta_{\rm H} 3.90$ (15a-H) but not between the methylene protons at $\delta_{\rm H} 4.87$ (24-H) and the methine proton at $\delta_{\rm H} 3.51$ (7a-H) or 3.90 (15a-H), ¹H and ¹³C NMR signals of gypsetin were assigned as shown in Table 1. However, the assignments of the positions 2 and 4 are concomitantly interchangeable with those of the positions 10 and 12, respectively, as carbon signals of C-8b and C-16b (both at $\delta_{\rm C} 130.2$), to which 2-H, 4-H, 10-H and 12-H signals correlate, have been

Position	δ _c (67.9 MHz)	δ _H (270 MHz) (<i>J</i> in Hz)	Position	δ _C (67.9 MHz)	$\delta_{\rm H} (270 \rm MHz) \\ (J \mbox{ in Hz})$
1	124.6	7.20 (1H, m)	13a	91.0	
2*	119.9	6.77 (1H, m)	15	170.4	
3	130.6	7.08 (1H, m)	15a	61.0	3.90 (1H, dd, J=2.5, 11.1)
4**	111.2	6.60 (1H, m)	16	35.8	2.63 (1H, dd, J=11.1, 13.6),
4a	148.6	—			3.27 (1H, dd, J=2.5, 13.6)
5		6.36 (1H, s)	16a	87.7	
5a	93.7		16a-OH		2.31 (1H, brs)
7	167.9	—	16b	130.2	
7a	59.1	3.51 (1H, dd, J=7.3, 11.0)	17	44.7	
8	35.0	2.42 (1H, dd, $J = 7.3$, 13.2),	18	144.1	6.31 (1H, dd, $J = 11.0, 17.6$)
		2.70 (1H, dd, $J = 11.0, 13.2$)	19	113.2	5.03 (1H, dd, J = 1.5, 11.0),
8a -	88.7				5.09 (1H, dd, J=1.5, 17.6)
8a-OH	_	2.31 (1H, br s)	20	23.3	1.29 (3H, s)
8b	130.2		21	25.7	1.29 (3H, s)
9	123.6	7.17 (1H, m)	22	43.9	
10*	120.4	6.75 (1H, m)	23	144.2	5.89 (1H, dd, J=10.6, 18.0)
11	130.6	7.11 (1H, m)	24	112.8	4.87 (1H, dd, $J = 1.5$, 10.6),
12**	111.1	6.69 (1H, m)			4.87 (1H, dd, J=1.5, 18.0)
12a	148.4		25	22.1	0.63 (3H, s)
13	_	6.05 (1H, s)	26	27.0	0.58 (3H, s)

Table 1. ¹³C and ¹H NMR data for gypsetin in CDCl₃.

*** The assignments of the positions 2* and 4** are concomitantly interchangeable with the assignments of positions 10* and 12**, respectively.

Table 2. The crystal data for gypsetin.

Formula	C ₃₂ H ₃₆ N ₄ O ₄
Crystal system	Monoclinic
Space group	C2/2; P2.1, (4)
Cell dimensions	
a (Å)	11.190 (4)
b (Å)	12.480 (4)
c (Å)	12.575 (4)
β (°)	109.63 (2)
Z	2
d, calcd (g/cm^3)	1.32
Linear abs. μ (mm ⁻¹)	0.32

indistinguishable.

X-Ray Crystallographic Analysis

The structure of gypsetin was determined by single crystal X-ray analysis using MoK α radiation.

The crystal data are shown in Table 2. The structure was solved by direct methods and the relative molecular structure is shown in Fig. 5.

Discussion

In the present study, we determined the structure of gypsetin, a new metabolite belonging to complex diketopiperazine compounds. A variety of diketopiperazine compounds of microbial origin has been identified so far. Amauromine³⁾, a hypotensive vasodilator, is one of these diketopiperazines and is

Fig. 5. The molecular structure of gypsetin as determined by X-ray crystallography.

structurally related to gypsetin in that it consists of bis(1,1-dimethylallyl)-substituted [1]benzazolidine[3^{'''},2^{'''}:4^{''},5^{''}]azolidino[1^{''},2^{''}:4['],5[']][1,4]perhydrodiazin[1['],2[']:1,5]azolidino[2,3-b][1]benzazolidine structure. The positions of 1,1-dimethylallyl substitution are 5a and 13a in gypsetin, whereas these are 8a and 16a in amauromine. In gypsetin the positions 8a and 16a are substituted with hydroxyl groups. Due to a difference in the configuration of the substituents, the two compounds showed distinct nuclear magnetical characteristics; amauromine but not gypsetin possesses a symmetrical feature as a dimmer in ¹H and ¹³C NMR spectra. It is an intriguing subject to determine biosynthetic mechanisms leading to the formation of these compounds.

Experimental

Spectroscopic Studies

Mass spectra were obtained on a Hitachi M-80B mass spectrometer. ¹H and ¹³C NMR spectra were recorded on a JEOL GX 270 (270 MHz for ¹H and 67.9 MHz for ¹³C) spectrometer.

X-Ray Crystallography

Single crystal X-ray analysis was carried out with a SYNTEX R3 using MoK α radiation ($\lambda = 0.71073$ Å). Crystallographic calculations were performed with the SHELXTL PLUS program package on a MICROVAX II computer. Empirical absorption corrections were carried out. The structure was solved by direct methods and refined with the SHELXTL system. The refinement converged with R=7.7%; wR=7.1%. Hydrogen atoms were located by option HFIX of the SHELXTL program.

Acknowledgment

This work was supported in part by a Grant-in-Aid for Science Research from the Ministry of Education, Science and Culture and a Research Grant for Cardiovascular Diseases from the Ministry of Health and Welfare, Japan.

References

- SHINOHARA, C.; K. HASUMI, Y. TAKEI & A. ENDO: Gypsetin, a new inhibitor of acyl-CoA: cholesterol acyltransferase produced by *Nannizzia gypsea* var. *incurvata* IFO 9228. I. Fermentation, isolation, physico-chemical properties and biological activity. J. Antibiotics 47: 163~167, 1994
- STAHL, E. & P. J. SCHORN: Amines and tar bases. In Thin-Layer Chromatography. A Laboratory Handbook. Ed., E. Stahl, pp. 494~506, Springer-Verlag, Berlin Heidelberg, 1969
- TAKASE, S.; Y. KAWAI, I. UCHIDA, H. TANAKA & H. AOKI: Structure of amauromine, a new alkaloid with vasodilating activity produced by *Amauroascus* sp. Tetrahedron Lett. 25: 4673 ~ 4676, 1984